Abstract

The aim of this study was to determine the effect of L-arginine on nitric oxide (NO) synthesis, capacitation and acrosome reaction of boar spermatozoa. Ejaculated boar spermatozoa were washed and then cultured in a bicarbonate:CO(2)-buffered medium, modified NCSU-37, for 2 h. At the end of the culture, the status of spermatozoa was determined. The presence of (0.1-2.0 mmol l(-1)) L-arginine in the culture medium induced an acrosome reaction as determined by fluorescein isothiocyanate-peanut agglutinin (FITC-PNA) and increased intracellular NO content, as quantified by a fluorescent indicator, diaminofluorescein-2 diacetate (DAF-2 DA). This stimulatory effect of L-arginine was neutralized by supplementation with an NO synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (1 mmol l(-1)). However, the inactive enantiomorph, N(omega)-nitro-D-arginine methyl ester, did not affect the stimulatory effect of L-arginine. These results indicate that L-arginine induces an acrosome reaction through the NO signal pathway in boar spermatozoa. Furthermore, the stimulatory effect of L-arginine was inhibited in the presence of an anion transport inhibitor, 4-acetamido-4'-isothiocyano-stilbene-2,2'-disulphonic acid (SITS; 0.1 mmol l(-1)), whereas any responses of spermatozoa to caffeine were not inhibited by SITS. A stimulatory effect of L-arginine on capacitation and acrosome reaction of spermatozoa was also observed in modified NCSU37 medium by using a chlortetracycline fluorescence assay, but not in supplemented bicarbonate-free Tris-buffered medium. These results indicate that the presence of L-arginine induces nitric oxide synthesis and stimulates capacitation and acrosome reaction of boar spermatozoa only when active sperm anion transport is present as a result of bicarbonate supplementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.