Abstract

This study aimed to evaluate the mechanism associated with cytotoxic activity displayed by the drug 5-fluorouracil incorporated in Cu-BTC MOF and its slow delivery from the Cu-BTC MOF. Structural characterization encompasses elemental analysis (CHNS), differential scanning calorimetry (DSC), thermogravimetric analysis (TG/DTG), Fournier transform infrared (FIT-IR) and X-ray diffraction (XRD) was performed to verify the process of association between the drug 5-FU and Cu-BTC MOF. Flow cytometry was done to indicate that apoptosis is the mechanism responsible for the cell death. The release profile of the drug 5-FU from Cu-BTC MOF for 48hours was obeisant. Also, the anti-inflammatory activity was evaluated by the peritonitis testing and the production of nitric oxide and pro-inflammatory cytokines were measured. The chemical characterization of the material indicated the presence of drug associated with the coordination network in a proportion of 0.82g 5-FU per 1.0g of Cu-BTC MOF. The cytotoxic tests were carried out against four cell lines: NCI-H292, MCF-7, HT29 and HL60. The Cu-BTC MOF associated drug was extremely cytotoxic against the human breast cancer adenocarcinoma (MCF-7) cell line and against human acute promyelocytic leukemia cells (HL60), cancer cells were killed by apoptosis mechanisms. The drug demonstrated a slow release profile where 82% of the drug was released in 48hours. The results indicated that the drug incorporated in Cu-BTC MOF decreased significantly the number of leukocytes in the peritoneal cavity of rodents as well as reduced levels of cytokines and nitric oxide production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.