Abstract

Ca2+ regulates a variety of cellular processes that are essential to maintain cell integrity and function. Different methods have been used to study these processes by increasing intracellular Ca2+ levels. Here, we describe a protocol to initiate Ca2+-dependent membrane-related events, using laser ablation by near-infrared irradiation. This creates a rupture in the plasma membrane that allows the extracellular Ca2+ to enter the cell and thereby induce a receptor-independent Ca2+ increase. We report laser ablation protocols to study two different Ca2+-induced processes in human endothelial cells-membrane resealing and exocytosis of secretory granulescalled Weibel-Palade bodies (WPBs). Thus, laser ablation represents a technique that permits the analysis of different Ca2+-regulated processes at high spatiotemporal resolution in a controlled manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.