Abstract

CSV3 clones of simian virus 40 large T antigen-transformed murine 3T3 T cells can be made quiescent as part of a differentiation process. In these quiescent cells, insulin- and vanadate-induced mitogenesis are both associated with the induction of the c-jun proto-oncogene (Wang and Scott 1991 J. Cell. Physiol. 147, 102–110; Wang et al. 1991 Cell Growth Differ. 2, 645–652). The current studies were therefore designed to compare the early signal transduction pathways employed by insulin and vanadate to regulate c-jun expression. In quiescent CSV3-1 cells, down-regulation of protein kinase C by prolonged exposure to 12- O-tetradecanoylphorbol-13-acetate or inhibition of protein kinase C activity by treatment with the protein kinase C antagonist staurosporine is shown not to affect c-jun induction by insulin or vanadate. This suggests that both insulin and vanadate act in a protein kinase C-independent manner. Insulin's effect on c-jun induction does, however, involve a G protein because insulin's effect can be inhibited by pertussis toxin. In contrast, vanadate induction of c-jun is not affected by pertussis toxin. Genistein, a general tyrosine kinase inhibitor, can inhibit the ability of vanadate to induce c-jun but it does not inhibit insulin's effect. Finally, the depletion of polyamines, particularly spermidine, by dl-α-difluoromethylornithine treatment also prevents c-jun induction by insulin but dl-α-difluoromethylornithine treatment has no effect on c-jun induction by vanadate. These observations indicate that the c-jun induction by insulin and vanadate in CSV3-1 cells is mediated by different signal transduction mechanisms. Together with our previously published data, these results suggest that c-jun can be induced independent of protein kinase C activation, without involvement of pertussis toxin-sensitive G protein, independent of induction of c-fos, and without expression of high levels of intracellular polyamines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.