Abstract

Proinflammatory macrophage (M1) is now being suggested as a potential therapeutic strategy for cancer because of its tumoricidal capacity. However, few studies have been focused directly on the effects of M1 macrophages on cancer cells. Here, we found that M1 induced a subpopulation of CD44high/CD24-/low or ALDH1+ cells with CSC-like phenotypes from different types of breast cancer cells (BCCs) in a paracrine manner. Stat3/NF-κB pathways in BCCs were activated by proinflammatory cytokines, igniting Lin-28B-let-7-HMGA2 axis to induce CSC through epithelial-mesenchymal transition (EMT). Previously, we reported that Stat3-coordinated Lin-28B-let-7-HMGA2 axis initiated EMT in BCCs. Here, inhibition of Stat3/NF-κB pathways or Lin-28B-let-7-HMGA2 axis suppressed EMT/CSCs program. Notably, HMGA2 knockdown directly repressed M1-induced CSC formation and expression of Klf-4 and Nanog. Meanwhile, prolonged coculture with BCCs endowed M1 with M2 properties. M1 supernatant induced CSC from non-stem cancer cells, while M2 supernatant sustained a higher proportion of ALDH1+ cells. Our data suggest that macrophages might modulate CSC formation and maintenance by transferring between M1/M2 phenotype. Given that M1 are being considered as a promising immunotherapy tool, it is important to inhibit their CSC-inducing potential by targeting key molecules and pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.