Abstract

The mitochondrial toxin, 3-nitropropionic acid (3-NP), produces age-dependent oxidative stress and selective striatal damage, which may simulate Huntington's disease starting in middle age. Recent reports showed that apoptosis signal-regulating kinase 1 (Ask1) activated by oxidative stress triggers a cell death signaling pathway. 3-NP was injected to the striatum in C57BL/6J mice. We have confirmed that striatal lesion volume and DNA fragmentation were age-dependent after 3-NP treatment. In the non-injured striatum of the middle-aged group, the protein levels of Ask1 and its active form, phosphorylated Ask1 (pAsk1), were significantly higher than in the young group. Ask1 increased more in the 3-NP injured striatum of the middle-aged group than in the non-injured striatum, and subsequently the activity of pAsk1 was significantly higher than in the young group. However, middle-aged SOD1Tg mice showed significant reductions of Ask1 and pAsk1 in the injured and the non-injured striatum compared to the middle-aged group. In particular, apoptosis signal transduction and cell death were significantly inhibited by the reduction of Ask1 expression using siRNA. Present results suggest that age-related upregulation of Ask1 and oxidative stress may mediate age-dependent striatal vulnerability to 3-NP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.