Abstract

Erianin is a natural product derived from the traditional Chinese herb, Dendrobium chrysotoxum, which is highly valued for its antitumor activity in various cancer cells. However, the specific mechanism of antitumor activity of erianin in human hepatocellular carcinoma remains unclear. This study aimed to investigate erianin-induced apoptosis in human hepatocellular carcinoma HepG2 cells. The proliferation of HepG2 cells was significantly inhibited by the treatment of erianin in a doseand time-dependent manner. In addition, erianin induced a series of apoptosis-related events in HepG2 cells, including G2/M cell cycle arrest, the loss of the mitochondrial membrane potential, elevation of intracellular Ca2+, and accumulation of reactive oxygen species. Erianin activated the caspase-3 and caspase-9 without a change in caspase-8, accompanied by upregulation of the expression of Bax and downregulation of the expression of Bcl-2 along with cytochrome C release from the mitochondria. There was no significant change in Fas and FasL expression, indicating that the exogenous pathway is not involved in erianin-induced apoptosis. In summary, it concluded that erianin-induced apoptosis in HepG2 cells is through a mitochondria-mediated pathway. The results of this study suggest that erianin may serve as a novel therapeutic agent for the treatment of human hepatocellular carcinoma in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call