Abstract

Ten recombinant adenoviruses expressing either fragments of 1135, 1587, or 3329 nt or the full-length spike gene of transmissible gastroenteritis coronavirus (TGEV) have been constructed. These recombinants produce S polypeptides with apparent molecular masses of 68, 86, 135, and 200 kDa, respectively. Expression of the recombinant antigen driven by Ad5 promoters was inhibited by the insertion of an exogenous SV-40 promoter. Most of the recombinant antigens remain intracytoplasmic in infected cells. All the recombinant-directed expression products contain functional antigenic sites C and B (Gebaueret al.,1991,Virology183, 225–238). The recombinant antigen of 135 kDa and that of 200 kDa, which represents the whole spike protein, also contain antigenic sites D and A, which have previously been shown to be the major inducers of TGEV-neutralizing antibodies. Interestingly, here we show that recombinant S protein fragments expressing only sites C and B also induced TGEV-neutralizing antibodies. The chimeric Ad5–TGEV recombinants elicited lactogenic immunity in hamsters, including the production of TGEV-neutralizing antibodies. The antisera induced in swine by the Ad5 recombinants expressing the amino-terminal 26% of the spike protein (containing sites C and B) or the full-length spike protein, when mixed with a lethal dose of virus prior to administration to susceptible piglets, delayed or completely prevented the induction of symptoms of disease, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.