Abstract

Previously, we reported that the generation of cytolytic T lymphocytes (CTL) specific for syngeneic tumors induced by AKR/Gross leukemia viruses was under multi-gene control. Thus, although carrying the required immune response gene(s) encoded by the H-2b haplotype and characteristic of responder strains such as C57BL/6, AKR.H-2b congenic mice failed to mount antiviral CTL responses. Young adult AKR.H-2b:Fv-1b "doubly congenic" mice, however, were able to generate specific anti-AKR/Gross virus CTL activity. These results demonstrated that the positive effect of MHC-encoded immune response gene control could be overcome by the action of the Fv-1n allele. The responder status of the B6.Fv-1n congenic, however, indicated that this Fv-1n-mediated inhibition was dependent on the interaction of Fv-1n with another gene(s) encoded by the AKR background. The results of experiments performed with AKXL recombinant inbred mice further suggested that a single additional genetic locus, encoding the Akv-1 provirus, was necessary along with Fv-1n to cause inhibition of antiviral CTL generation. Here we show that the responsiveness of AKR.H-2b:Fv-1b mice is dependent on their age. Thus, with moderate aging these doubly congenic mice converted to a nonresponder status with respect to anti-AKR/Gross virus CTL production: 85% of mice less than or equal to 9 wk of age responded compared with 0% of mice greater than 9 wk old. As with nonresponder AKR.H-2b mice, an inverse correlation was observed between CTL responsiveness and the expression of CTL-defined viral antigens by normal cells. Namely, spleen cells from young AKR.H-2b:Fv-1b mice showed little or no expression of such viral antigens, whereas with moderate aging there was a steady increase in their display. These results are discussed with reference to possible mechanisms of unresponsiveness of AKR.H-2b vs moderately aged AKR.H-2b:Fv-1b mice, and with respect to the utility of this system as a model for naturally occurring retrovirus infections and the interactions of retroviruses with the immune system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.