Abstract

We have previously described two cases of children with a liver mitochondrial DNA (mtDNA) depletion syndrome, characterised by a low ratio of mtDNA to nuclear DNA. Light microscopy performed on liver biopsy showed abnormal hepatocytes with a characteristic ‘oncocytic’ appearance, indicative of perturbed oxidative phosphorylation. The adenine nucleotide translocator (ANT), the last step in oxidative phosphorylation catalyses the exchange of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) between the cytosol and mitochondria. The ANT2 gene, which is not normally expressed in human tissues, encodes an isoform preferentially expressed under conditions of glycolytic metabolism. ANT2 gene expression is regulated by a transcription factor involved in a molecular mechanism selecting for the import of glycolytic ATP into the mitochondrial matrix. This ATP import is required in highly proliferative cells, such as tumour cells, which are highly dependent on glycolysis for ATP synthesis. We postulated that, as a result of the defective oxidative phosphorylation observed in these patient biopsies, the ANT2 expression would be induced. We simultaneously quantified the mtDNA depletion and the ANT2 gene expression in liver biopsies from the two patients and six controls. ANT2 mRNA levels were significantly increased in the two patient liver biopsies. Moreover, in one patient, the liver mtDNA depletion was found to be partially reversed after less than 4 years and this reversion was coupled to a concomitant decrease of the ANT2 expression. These results suggest that dysfunction of oxidative phosphorylation could lead to a switch from mitochondrial to glycolytic ATP production, to restore tissue-specific energy requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call