Abstract

Suspension-cultured cells of tomato (Lycopersicon esculentum) start to secrete an RNA-degrading enzyme activity during transition from logarithmic to stationary growth phase. Using affinity chromatography on agarose-5-(4-aminophenyl-phosphoryl) uridine 3'(2') monophosphate as a powerful and final enrichment step, the enzyme was purified to homogeneity and characterized as ribonuclease I (RNase I) according to the following data: (a) it has an M(r) of 22,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), a pH-optimum of pH 5.5, a pl of 3.9, and its activity was found to be insensitive to EDTA; (b) the enzyme splits single-stranded RNA endonucleolytically by a phosphotransferase reaction yielding 2',3'-cNMPs as primary monomeric products; (c) as studied with diribonucleoside monophosphates as substrates, the enzyme exhibits a pronounced preference for 5' purine residues adjacent to the cleavage site. Most interestingly, in vivo synthesis and secretion was found to be induced when tomato cells were specifically starved for phosphate as mineral nutrient. (a) Extracellular enzyme activity increased about tenfold after transfer of phosphate-grown cells into medium lacking only phosphate. Accordingly, this increase in activity was not detectable when cells were constantly supplied with phosphate. (b) Biosynthetically labeling of the extracellular protein with radioactive amino acids was detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/fluorography directly within the bulk of extracellular proteins. Therefore, we propose that the secreted tomato RNase I synthesized upon phosphate starvation is a component of a higher plant inducible rescue system for scavenging exogenous phosphate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call