Abstract

It is shown that, in general, when submicrometer hybrid particles of polymer@silica are subjected to thermal treatment, phase-separated hydrophobicity emerges at particles surface; and that the triggering of hydrophobicity results in particles which show amphiphilic behavior, arranging themselves at water interfaces and stabilizing W/O and O/W emulsions. Many polymer@silica particles show this behavior, and the entrapped polymers include polyethylene Engage, poly(dimethylsiloxane), poly-l-lactic acid, poly(ethylene-block-ethyleneglycol), poly(styrene-co-allyl-achohol), and poly(dimethylesiloxane-block-ethyleneoxide-co-propyleneoxide). The concept is attractive because, by doping the particles with functional molecules, one can get various surfactants from the same treated particle; this is demonstrated with fluorescent probes. It is proposed that the amphiphilic activity is due to Janus heterogeneous distribution of the hydrophobic moieties on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.