Abstract

The activity of delta-aminolevulinic acid (ALA) dehydratase, an enzyme involved in heme biosynthesis, has been shown to increase in Friend virus-transformed murine erythroleukemia (MEL) cells during erythroid differentiation. In this study, the nature of the increase in ALA dehydratase activity in MEL cells was examined using a monospecific antibody directed to the enzyme. A sevenfold increase in ALA dehydratase activity was observed after cells had been treated with 1.5% Me2SO for 5 days. Ouchterlony double immunodiffusion analysis showed that lysates from untreated and Me2SO-treated MEL cells formed a single precipitin line with rabbit IgG directed to the normal mouse liver ALA dehydratase. A single arc of identity was also observed with the lysates from normal mouse erythrocytes, spleen, liver, and lysates from both uninduced and induced MEL cells. Rocket immunoelectrophoresis demonstrated that lysates from both uninduced and induced cells formed rockets with the IgG and that the peak height of the rocket was proportional to the ALA dehydratase activity applied. The slope of linear plots of rocket peak heights v ALA dehydratase activity was identical for lysates from uninduced and Me2SO-induced cells. Succinylacetone, a potent inhibitor of ALA dehydratase, was shown to markedly inhibit the activity of the enzyme, but did not interfere with the synthesis of ALA dehydratase induced by Me2SO treatment. Me2SO-induced increases in ALA dehydratase activity and the enzyme protein were both blocked by the simultaneous treatment of cells with 5-bromo-2'-deoxyuridine (BrdU). BrdU-mediated repression of ALA dehydratase was partially overcome by treating the cells with thymidine. These data demonstrate that increased ALA dehydratase activity in MEL cells undergoing erythroid differentiation after Me2SO treatment is due to de novo synthesis of the same enzyme protein present in uninduced MEL cells as well as in normal erythrocytes. This represents the first direct demonstration of an increase in a heme biosynthetic pathway enzyme protein in erythroid cells undergoing differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.