Abstract
Selective suppression of graft rejection while maintaining anti-pathogen responses has been elusive. Thus far, the most successful strategies to induce suppression of graft rejection relies on inhibition of T-cell activation. However, the very same mechanisms that induce allograft-specific T-cell suppression are also important for immunity against microbial pathogens as well as oncogenically transformed cells, resulting in significant immunosuppression-associated comorbidities. Therefore, defining the pathways that differentially regulate anti-graft versus antimicrobial T-cell responses may allow the development of regimen to induce allograft-specific tolerance. Recent work has defined a molecular pathway driven by the immunoregulatory protein coronin 1 that regulates the phosphodiesterase/cyclic adenosine monophosphate pathway and modulates T cell responses. Interestingly, disruption of coronin 1 promotes allograft tolerance while immunity towards a range of pathogenic microbes is maintained. Here, we briefly review the work leading up to these findings as well as their possible implications for transplantation medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.