Abstract

When Tetrahymena thermophila cells growing at 30 degrees C are shifted to either 40 or 43 degrees C, the kinetics and extent of induction of heat shock mRNAs in both cases are virtually indistinguishable. However, the cells shifted to 40 degrees C show a typical induction of heat shock protein (HSP) synthesis and survive indefinitely (100% after 24 h), whereas those at 43 degrees C show an abortive synthesis of HSPs and die (less than 0.01% survivors) within 1 h. Cells treated at 30 degrees C with the drugs cycloheximide or emetine, at concentrations which are initially inhibitory to protein synthesis and cell growth but from which cells can eventually recover and resume growth, are after this recovery able to survive a direct shift from 30 to 43 degrees C (ca. 70% survival after 1 h). This induction of thermotolerance by these drugs is as efficient in providing thermoprotection to cells as is a prior sublethal heat treatment which elicits the synthesis of HSPs. However, during the period when drug-treated cells recover their protein synthesis ability and simultaneously acquire the ability to subsequently survive a shift to 43 degrees C, none of the major HSPs are synthesized. The ability to survive a 1-h, 43 degrees C heat treatment, therefore, does not absolutely require the prior synthesis of HSPs. But, as extended survival at 43 degrees Celsius depends absolutely on the ability of cells to continually synthesize HSPs, it appears that a prior heat shock as well as the recovery from protein synthesis inhibition elicits a change in the protein synthetic machinery which allows the translation of HSP mRNAs at what would otherwise be a nonpermissive temperature for protein synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.