Abstract

Dendritic cells (DC) are important regulators of T cell immunity. The degree of stimulation, the pattern of costimulatory molecules expressed, and the cytokines secreted by DC dictate the nature of the effector and memory cells generated, particularly with respect to their Th1 or Th2 phenotypes. In this study, we demonstrate that the addition of activated DC to spleen cultures containing established Th2-polarized CD4(+) T cells was sufficient to suppress Th2 and induce Th1 cytokines in a recall response, a phenomenon referred to as phenotype reversal. The ability of activated DC to induce phenotype reversal displayed exquisite Ag specificity. The DC activator B7-DC cross-linking Ab (XAb) was >10,000-fold more efficient at inducing phenotype reversal than the TLR agonists CpG-oligodeoxynucleotide and Gardiquimod. Characterization of the mechanisms governing phenotype reversal revealed the requirement for cognate interaction between the TCR:peptide-MHC complex, the expression of the costimulation/adhesion molecule ICAM-1, and secretion of IL-12 and IFN-gamma by the activated DC. The requirement for the costimulation/adhesion molecule SLAM (signaling lymphocytic activation molecule) was found to be quantitative. Thus, activation of DC, particularly by crosslinking B7-DC, can modulate well-established Th2 T cell responses in an Ag-specific manner. Because the regulation of mouse and human DC by B7-DC XAb overlaps in several significant ways, immune modulation with B7-DC XAb is a potential strategy for treating Th2-mediated diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.