Abstract

Hypertrophy of vascular smooth muscle cells occurs during hypertension-induced remodelling of arteries and during development of arteriosclerosis and restenosis following angioplasty but the pathogenesis of the hypertrophic status is not yet fully understood. In a previous study we demonstrated that the synthetic non-sulfated, non-toxic heparin-mimicking compound RG-13577 is capable of inducing a cell cycle-arrested hypertrophic phenotype of coronary smooth muscle cells. In this study we clarify the mode of action of RG-13577 and demonstrate that the RG-13577-induced hypertrophy is associated with an increased expression of TGF-beta1 as indicated by an increase in TGF-beta1-specific protein and mRNA level. Furthermore we show that RG-13577-treated hypertrophic smooth muscle cells maintain full metabolic activity as indicated by a continuous de novo synthesis of protein and proteoglycans and that the RG-13577-induced growth arrest is caused not only by a higher expression of TGF-beta, but also by a reduced response of RG-treated cells to the mitogenic activity of bFGF, PDGF and EGF. The growth inhibitory activity of RG-13577 is reduced in the presence of neutralizing antibodies against TGF-beta. TGF-beta itself has anti-proliferative activity in serum-depleted medium. The RG-13577 effect is reversible since incubation of hypertrophic cells in RG-13577-free medium restores cell volume and [3H]thymidine incorporation to the values of untreated control cells within 4 days. We conclude, that the active metabolic status of RG-13577-treated cells in association with the overexpression of TGF-beta could promote repair processes of injured arteries after angioplasty without stimulating cell proliferation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call