Abstract

We report unique phenomena where the transition from a homochiral helix to a heterochiral helix occurs by increasing the chain length of the l-sequence. Peptides composed of the l-Leu sequences with different lengths and the achiral nona-sequence at the C-terminal side were used here. Conformation of their peptides in solution was investigated mainly by using CD analysis in various solvents, or additionally by IR and NMR. When the l-sequence has a sufficient length, a left-handed helicity was induced in the achiral sequence. Notably, the polymeric l-sequence produced a heterochiral helix that switches the helix sense around the boundary of the chiral/achiral sequence. Energy calculation demonstrated that a stable heterochiral helix favors a bending form, while a homochiral helix takes a relatively straight form. Such a bending form was suggested to be advantageous to solvent effects. The "Schellman motif" has been recognized as a local heterochiral structure in protein helices. We propose a nucleation model of a heterochiral helix through the covalent chiral domino effect derived from the Schellman motif. The present findings not only offer us novel design of a heterochiral helix but also support an elementary model for the origins of homochiral-heterochiral structures from primitive chiral/achiral sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call