Abstract

Using a forward mutation assay we have previously found that N-2-acetylaminofluorene (AAF), a strong chemical carcinogen, induces a majority of frameshift mutations located at specific sequences called mutation hot spots. Among these hot spot sequences, the NarI sequence (GGCGCC), is specific for -2 frameshifts (GGCGCC)----GGCC). Interestingly, these frameshift mutations occur independently of a functional umuDC locus. Being interested in elucidating this mutation pathway we have developed a reversion assay that is specific for this class of mutations. The assay is based on the reversion of a +2 frameshift mutant of plasmid pBR322 from tetracycline sensitivity to tetracycline resistance. It is shown that only "true" reversion events lead to tetracycline resistance. The carcinogen AAF induces this reversion event at a frequency that is increased four- to fivefold over the background frequency. A series of chemical carcinogens which, like AAF, bind covalently to the C8 position of guanine, are compared for their efficiency to induce this specific mutation event. Large variations in the mutagenic efficiency of these chemicals are observed and discussed in terms of the anti/syn conformation of the carcinogen-modified guanine residue. Based on this test, we describe a convenient spot assay that this presently used in our laboratory to isolate Escherichia coli mutants affected in this mutation pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call