Abstract

In this work we propose an original fault signature based on the Hilbert-Park Lissajou’s curve analysis. The performances of the proposed signature were compared to those of the Park Lissajou’s curve which is the signature most recently used. ¶The proposed fault signature does not require a long temporal recording, and their processing is simple. This analysis offers an easy interpretation to conclude on the induction motor condition and its voltage supply state. The proposed signature shows its efficiency especially in the case of unloaded machine. The geometrical characteristic of all Hilbert-Park Lissajou’s curves are calculated in order to develop the input vector necessary for the pattern recognition tools based on neural network approach with an aim of classifying automatically the various states of the induction motor. This approach was applied to a 1.1 kw induction motor under normal operation and with the following faults: unbalanced voltage, air-gap eccentricity and outer raceway bearing defect

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.