Abstract
A clonal selection programming (CSP)-based fault detection system is developed for performing induction machine fault detection and analysis. Four feature vectors are extracted from power spectra of machine vibration signals. The extracted features are inputs of an CSP-based classifier for fault identification and classification. In this paper, the proposed CSP-based machine fault diagnostic system has been intensively tested with unbalanced electrical faults and mechanical faults operating at different rotating speeds. The proposed system is not only able to detect electrical and mechanical faults correctly, but the rules generated is also very simple and compact and is easy for people to understand, This will be proved to be extremely useful for practical industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.