Abstract

This paper describes a novel method of detecting and unambiguously diagnosing the type and magnitude of three induction machine fault conditions from the single sensor measurement of the radial electromagnetic machine vibration. The detection mechanism is based on the hypothesis that the induction machine can be considered as a simple system, and that the action of the fault conditions are to alter the output of the system in a characteristic and predictable fashion. Further, the change in output and fault condition can be correlated allowing explicit fault identification. Using this technique, there is no requirement for a priori data describing machine fault conditions, the method is equally applicable to both sinusoidally and inverter-fed induction machines and is generally invariant of both the induction machine load and speed. The detection mechanisms are rigorously examined theoretically and experimentally, and it is shown that a robust and reliable induction machine condition-monitoring system has been produced. Further, this technique is developed into a software-based automated commercially applicable system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.