Abstract

In the present work, the heat transfer behavior during induction heating of a cylindrical aluminum billet is performed numerically. The heating process is represented by the energy conservation equation where the heat generation during heating is added as a volumetric source term. The evolution of latent heat during melting is also added as a volumetric source term. The continuity and the momentum conservation equations are considered to represent the flow field after melting starts. These governing equations are solved based on the control volume method. The enthalpy update scheme is used for evolution of melt-fraction during heating. The work predicts the evolution of temperature during heating, the distributions of temperature and melt-fraction in the domain. Subsequently, a parametric study is also performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.