Abstract
This work explores the effect of heating rate on the prior austenite grain size and hardness of a thermomechanically processed novel niobium-microalloyed 0.40 % carbon low-alloyed steel intended for use in induction hardened slurry pipelines. The aim was to identify the heating rates that lead to the maximum hardness, for high wear resistance, and minimum prior austenite grain size, for high toughness. For this purpose, a Gleeble 3800 machine has been employed to simulate the induction hardening process and provide dilatometric phase transformation data. The prior austenite grain structure has been reconstructed from the EBSD results using a MatlabR script supplemented with MTEX texture and crystallography analyses. Heating rates ranged from 1 to 50 °C/s and the cooling rate was 50 °C/s. The results show that the prior austenite grain size greatly depended on the heating rate: compared to the lower heating rates, the maximum heating rate of 50 C/s produces remarkably fine prior austenite grains and a fine final martensitic microstructure after quenching. In addition, a relation between the heating rate and the deviation from equilibrium temperature has been established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.