Abstract

Wind power is the fastest growing renewable energy and is promising as the number one source of clean energy in the near future. Among various generators used to convert wind energy, the induction generator has attracted more attention due to its lower cost, lower requirement of maintenance, variable speed, higher energy capture efficiency, and improved power quality [1-2]. Generally, there are two types of induction generators widely used in wind power systems – Squirrel-Cage Induction Generator (SCIG) and Doubly-Fed Induction Generator (DFIG). The straightforward power conversion technique using SCIG is widely accepted in fixed-speed applica‐ tions with less emphasis on the high efficiency and control of power flow. However, such direct connection with grid would allow the speed to vary in a very narrow range and thus limit the wind turbine utilization and power output. Another major problem with SCIG wind system is the source of reactive power; that is, an external reactive power compensator is required to hold distribution line voltage and prevent whole system from overload. On the other hand, the DFIG with variable-speed ability has higher energy capture efficiency and improved power quality, and thus dominates the large-scale power conversion applications. With the advent of power electronics techniques, a back-to-back converter, which consists of two bidirectional converters and a dc-link, acts as an optimal operation tracking interface between DFIG and loads [3-5]. Field orientation control (FOC) is applied to both rotorand stator-side converters to achieve desirable control on voltage and power [6,7]. In this chapter, a brief introduction of wind power system is presented first, which is followed by introduction of SCIG and DFIG from aspects of modeling and control. The basic FOC algorithm is derived based on DFIG model in dq reference frame. At last, the power generation efficiency is considered through different Maximum Power Point Tracking (MPPT) methods that have attracted a lot of attention in the variable© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. speed operation systems. A comparative analysis involving advantage and disad‐ vantage of the methods is conducted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.