Abstract

During chronic metabolic acidosis (CMA), the plasma levels of glutamine are increased and so is glutamine metabolism in the kidney tubule cells. Degradation of glutamine results in the formation of ammonium (NH(4)(+)) and bicarbonate (HCO(3)(-)) ions, which are excreted in the pre-urine and transported to the peritubular blood, respectively. This process contributes to counteract acidosis and to restore normal pH, but the molecular mechanism, the localization of the proteins involved and the regulation of glutamine transport into the renal tubular cells, remains unknown. SN1, a Na(+)- and H(+)-dependent glutamine transporter has previously been identified molecularly, and its mRNA has been detected in tubule cells in the medulla of the kidney. Now shown is the selective targeting of the protein to the basolateral membranes of the renal tubule cells of the S3 segment throughout development of the normal rat kidney. During CMA, SN1 expression increases five- to six-fold and appears also in cortical tubule cells in parallel with the increased expression and activity of phosphate-activated glutaminase, a mitochondrial enzyme involved in ammoniagenesis. However, SN1 remains sorted to the basolateral membranes. The unique ability of SN1 to change transport direction according to physiologic changes in transmembrane gradients of [glutamine] and pH and its sorting to the basolateral membranes and the presence of a putative pH responsive element in the 3' untranslated region (UTR) of the gene (supported here by the demonstration in CMA kidney of a protein that binds SN1 mRNA) are conducive to the function of this transporter in pH regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.