Abstract

Two assay were employed to study the induction and repair of DNA double-strand breaks (dsbs) in normal human fibroblasts after exposure to particle radiation covering an LET range from 1 to 350 keV/μm. The hybridization assay allows measurement of absolute induction frequencies in defined regions of the genome and quantitates rejoining of correct DNA ends while the FAR assay determines all rejoining events, correct and incorrect. Assuming Poisson statistics for the number of breaks per DNA fragment investigated, and thus neglecting any clustering of breaks, we found the induction rate to decrease with increasing LET of the particles. RBE values compared to 225 kVp X-rays dropped to 0.48 for the highest LETs. Repair studies of X-ray-induced dsbs showed that almost all breaks (>95%) are rejoined after incubation times of 24 h while the frequency for correct rejoining is only 70%. Thus about 25% of the initially induced breaks are rejoined by the connection of incorrect DNA ends. Postirradiation incubation after particle irradiation showed less efficient total rejoining with increasing LET and an impaired ability for correct rejoining. The frequency for rejoining of incorrect DNA ends was found to be independent of LET. The possible biological significance of the different rejoining events is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.