Abstract

1. In sheep cardiac Purkinje fibres superfused with K-free, Na-free medium, the membrane potential can be stable either at a low negative level (-50 mV) or at a high negative level (-100 mV). The mechanism underlying the existence of these two stable potential levels was investigated using the two-micro-electrode voltage-clamp technique.2. By applying a voltage clamp of a certain duration at an appropriate level the membrane potential could be shifted from one stable level to the other. The shift was observed in Cl-free medium, excluding a redistribution of Cl as a possible explanation.3. Currents during and following a voltage step and their change with amplitude and duration of the voltage step could not be explained on the basis of depletion or accumulation of K ions in the narrow extracellular clefts.4. Instantaneous currents determined from the high negative resting level showed a high conductance and a pronounced inward rectification, while measurements from the low negative resting level indicated a low conductance and absence of inward rectification. The steady-state current-voltage relation was dependent on the holding potential and showed memory or hysteresis.5. Estimation of the conductance by superimposed short voltage-clamp pulses showed an increase in conductance during a hyperpolarizing clamp from the low negative level and a decrease in conductance during a depolarizing clamp from the high negative level. The time-dependent current during a hyperpolarizing clamp from the low negative level reversed direction at a potential level corresponding to E(K), assuming a cleft K concentration of about 1 mM. In the presence of 0.1 mM-Ba the time-dependent current was abolished.6. The results suggest that the shift between the two stable levels is due to a time-dependent conductance change in the K inward rectifier channel, i(K1). The existence of memory excludes activation or de-activation only depending on the voltage gradient. Interaction of extracellular K ions with a site in the membrane is proposed as the activating mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.