Abstract

Fas-mediated apoptosis has been proposed to play an important role in the pathogenesis of Hashimoto's thyroiditis. Normal thyroid cells are resistant to Fas-mediated apoptosis in vitro but can be sensitized by the unique combination of interferon-gamma and IL-1beta cytokines. We sought to examine the mechanism of this sensitization and apoptosis signaling in primary human thyroid cells. Without the addition of cytokines, agonist anti-Fas antibody treatment of the thyroid cells resulted in the cleavage of proximal caspases, but this did not lead to the activation of caspase 7 and caspase 3. Apoptosis associated with the cleavage of caspases 7, 3, and Bid, and the activation of mitochondria in response to anti-Fas antibody occurred only after cytokine pretreatment. Cell surface expression of Fas, the cytoplasmic concentrations of procaspases 7, 8, and 10, and the proapoptotic molecule Bid were markedly enhanced by the presence of the cytokines. In contrast, P44/p42 MAPK (Erk) appeared to provide protection from Fas-mediated apoptosis because an MAPK kinase inhibitor (U0126) sensitized thyroid cells to anti-Fas antibody. In conclusion, Fas signaling is blocked in normal thyroid cells at a point after the activation of proximal caspases. Interferon-gamma/IL-1beta pretreatment sensitizes human thyroid cells to Fas-mediated apoptosis in a complex manner that overcomes this blockade through increased expression of cell surface Fas receptor, increases in proapoptotic molecules that result in mitochondrial activation, and late caspase cleavage. This process involves Bcl-2 family proteins and appears to be compatible with type II apoptosis regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.