Abstract

The paper presents results of application of a rule induction and pruning algorithm for classification of a microseismic hazard sate in coal mines. Due to imbalanced distribution of examples describing states “hazardous” and “safe”, the special algorithm was used for induction and rule pruning. The algorithm selects optimal parameters‘ values influencing rule induction and pruning based on training and tuning sets. A rule quality measure which decides about a form and classification abilities of rules that are induced is the basic parameter of the algorithm. The specificity and sensitivity of a classifier were used to evaluate its quality. Conducted tests show that the admitted method of rules induction and classifier’s quality evaluation enables to get better results of classification of microseismic hazards than by methods currently used in mining practice. Results obtained by the rules-based classifier were also compared with results got by a decision tree induction algorithm and by a neuro-fuzzy system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.