Abstract

With operating frequencies entering the multi-gigahertz range, inductance has become an important consideration in the design and analysis of on-chip interconnects. In this paper, we present an accurate and efficient inductance modeling and analysis methodology for high-performance interconnect. We determine the critical elements for a PEEC based model by analyzing the current flow in the power grid and signal interconnect. The proposed model includes distributed interconnect resistance, inductance and capacitance, device decoupling capacitances, quiescent switching currents in the grid, pad connections, and pad/package inductance. We propose an efficient methodology for extracting these elements, using statistical models for on-chip decoupling capacitance and switching currents. Simulation results show the importance of various elements for accurate inductance analysis. We also demonstrate the accuracy of the proposed model compared to the traditional loop-based inductance approach. Since the proposed model can consist of hundreds of thousands of RLC elements, and a fully dense mutual inductance matrix, we propose a number of acceleration techniques that enable efficient analysis of large interconnect structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call