Abstract

Solenoids are employed in Magnetic Resonance (MR) as radiofrequency (RF) coils due to their high sensitivity. In particular, their cylindrical symmetry is optimal for circular cross-sectional samples. Solenoid inductance estimation is a constraint for a correct design and tuning of the resonant circuit constituting the RF coil, suitable to be used for transmitting and receiving the RF signal of the given X-nucleus with the available MR scanner. However, the different literature formulation for solenoid inductance estimation is not optimized for a wide variety of coil geometries and doesn’t take into account conductor geometry. This paper proposes an analytical method for the solenoid inductance calculation in dependence on the conductor cross-sectional geometry (flat strip and circular wire). Simulations accuracy was evaluated with workbench experimental measurement performed on a home-built strip solenoid and by comparisons with literature data referred to wire solenoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call