Abstract

Mucosal IgA or secretory IgA (SIgA) are structurally equipped to resist chemical degradation in the harsh environment of mucosal surfaces and enzymes of host or microbial origin. Production of SIgA is finely regulated, and distinct T-independent and T-dependent mechanisms orchestrate Ig α class switching and SIgA responses against commensal and pathogenic microbes. Most infectious pathogens enter the host via mucosal surfaces. To provide a first line of protection at these entry ports, vaccines are being developed to induce pathogen-specific SIgA in addition to systemic immunity achieved by injected vaccines. Mucosal or epicutaneous delivery of vaccines helps target the inductive sites for SIgA responses. The efficacy of such vaccines relies on the identification and/or engineering of vaccine adjuvants capable of supporting the development of SIgA alongside systemic immunity and delivery systems that improve vaccine delivery to the targeted anatomic sites and immune cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.