Abstract

Abstract. Crop rotation and biofertilizer application have historically been employed as efficient management strategies for soil-borne disease suppression through soil microbiome manipulation. However, how this occurs and to what extent the combination of methods affects the microbiota reconstruction of diseased soil is unknown. In this study, pineapple–banana rotation combined with biofertilizer application was used to suppress banana Fusarium wilt disease, and the effects on both bacterial and fungal communities were investigated using the MiSeq Illumina sequencing platform. Our results showed that pineapple–banana rotation significantly reduced Fusarium wilt disease incidence and the application of biofertilizer caused additional suppression. Bacterial and fungal communities thrived using rotation combined with biofertilizer application: taxonomic and phylogenetic α diversity of both bacteria and fungi increased along with disease suppression. Between the two strategies, biofertilizer application predominantly affected both bacterial and fungal community composition compared to rotation. Burkholderia genus may have been attributed to the general wilt suppression for its change in network structure and high relative importance in linear models. Our results indicated that pineapple–banana rotation combined with biofertilizer application has strong potential for the sustainable management of banana Fusarium wilt disease.

Highlights

  • Banana Fusarium wilt disease caused by Fusarium oxysporum f. sp. cubense (FOC) race 4 forms a major constraint on the yield and quality of banana production (Ploetz, 2015; Butler, 2013)

  • Our objectives were to (1) determine the direct effects of pineapple–banana rotation alone and pineapple–banana rotation combined with biofertilizer application to control banana Fusarium wilt disease, (2) explore the characteristics of the soil microbial communities prompted by crop rotation and biocontrol strategies after banana harvest using the MiSeq platform, and (3) evaluate the probable disease suppression mechanisms caused by rotation and biocontrol strategy

  • ANOVA showed that Chlamydiae, Cyanobacteria/chloroplast, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia abundances were significantly higher in the pineapple rotation treatment with biofertilizer application (PBIO) and POF treatment samples than those in the BOF treatment, and the relative abundance of Ascomycota was lower in the PBIO treatment (Duncan test, p < 0.05)

Read more

Summary

Introduction

Banana Fusarium wilt disease caused by Fusarium oxysporum f. sp. cubense (FOC) race 4 forms a major constraint on the yield and quality of banana production (Ploetz, 2015; Butler, 2013). Multiple studies have revealed that individual measures, such as fumigation (Duniway, 2003; Liu et al, 2016), chemical fungicides (Nel et al, 2007), crop rotation (Zhang et al, 2013b), and bio-control (Wang et al., 2013), have particular effects on reducing the incidence of soil-borne diseases by disrupting soil microbial community membership and structure. B. Wang et al.: Inducing disease suppression through rotation and biofertilizer application control efficiency. Shen et al (2018) reported that biofertilizer application after fumigation with lime and ammonium bicarbonate was an effective strategy to control banana Fusarium wilt disease. While many measures can individually slow down the spread of Fusarium wilt disease (Pda et al, 2017), control effects can be accelerated and amplified by using more than one agricultural practice

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.