Abstract

We consider the three-dimensional Hamiltonian for Bi2Se3, a second-generation topological insulator, under the effect of a periodic drive for both in-plane and out-of-plane fields. As it will be shown by means of high-frequency expansions up to second order in the Floquet Hamiltonian, the driving induces anisotropies in the Dirac cone and opens up a quasienergy gap for in-plane elliptically polarized fields. Analytic expressions are obtained for the renormalized velocities and the quasienergy gap. These expressions are then compared to numerical calculations performed by discretizing the Hamiltonian in a one-dimensional lattice and following a staggered fermion approach, achieving a remarkable agreement. We believe our work may have an impact on the transport properties of topological insulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call