Abstract

Soluble expression of enzymes inside the cell is a prerequisite for the successful biotransformation of valuable products. Some key enzymes involved in biotransformation processes, however, are hardly expressed in their soluble forms. Here, we propose an inducible plasmid display, which is a molecular evolution strategy coupled with a high-throughput screening and/or selection method, as a simple and powerful tool for improving the solubility of target enzymes. Specifically, the Oct-1 DNA-binding domain and intein (i.e., auto-processing domain) were employed as anchoring and protein trans-splicing motifs to develop the system, in which the probability of protein trans-splicing is dependent on the soluble property of target proteins. The applicability of inducible plasmid display was investigated using an α-1,2-fucosyltransferase (FucT2) from Helicobacter pylori, a highly insoluble and unstable enzyme in the cytoplasmic space of Escherichia coli, as a model protein. One round of the overall inducible plasmid display process, which consists of in vivo production of FucT2 mutants and in vitro screening, enabled soluble expression of FucT2 and selection of plasmids containing the corresponding genetic information. The inducible plasmid display developed in this study will contribute to the rapid and efficient screening and/or selection of soluble proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.