Abstract

OBJECTIVE—Podocyte-specific, doxycycline (DOX)-inducible overexpression of soluble vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1) in adult mice was used to investigate the role of the VEGF-A/VEGF receptor (VEGFR) system in diabetic glomerulopathy.RESEARCH DESIGN AND METHODS—We studied nondiabetic and diabetic transgenic mice and wild-type controls treated with vehicle (VEH) or DOX for 10 weeks. Glycemia was measured by a glucose-oxidase method and blood pressure by a noninvasive technique. sFlt-1, VEGF-A, VEGFR2, and nephrin protein expression in renal cortex were determined by Western immunoblotting; urine sFlt-1, urine free VEGF-A, and albuminuria by enzyme-linked immunosorbent assay; glomerular ultrastructure by electron microscopy; and VEGFR1 and VEGFR2 cellular localization with Immunogold techniques.RESULTS—Nondiabetic DOX-treated transgenic mice showed a twofold increase in cortex sFlt-1 expression and a fourfold increase in sFlt-1 urine excretion (P < 0.001). Urine free VEGF-A was decreased by 50%, and cortex VEGF-A expression was upregulated by 30% (P < 0.04). VEGFR2 expression was unchanged, whereas its activation was reduced in DOX-treated transgenic mice (P < 0.02). Albuminuria and glomerular morphology were similar among groups. DOX-treated transgenic diabetic mice showed a 60% increase in 24-h urine sFlt-1 excretion and an ∼70% decrease in urine free VEGF-A compared with VEH-treated diabetic mice (P < 0.04) and had lower urine albumin excretion at 10 weeks than VEH-treated diabetic (d) mice: d-VEH vs. d-DOX, geometric mean (95% CI), 117.5 (69–199) vs. 43 (26.8–69) μg/24 h (P = 0.003). Diabetes-induced mesangial expansion, glomerular basement membrane thickening, podocyte foot-process fusion, and transforming growth factor-β1 expression were ameliorated in DOX-treated diabetic animals (P < 0.05). Diabetes-induced VEGF-A and nephrin expression were not affected in DOX-treated mice.CONCLUSIONS—Podocyte-specific sFlt-1 overexpression ameliorates diabetic glomerular injury, implicating VEGF-A in the pathogenesis of this complication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.