Abstract
Cingulin is a component of the cytoplasmic domain of vertebrate tight junctions (TJ). Mutation or down-regulation of cingulin in cultured cells results in changes in gene expression. Some of these changes are dependent on RhoA, whose activity is regulated by GEF-H1, which is inactivated by binding to cingulin at junctions. To gain further insights on the function of cingulin through dominant-negative effects, we cloned and sequenced canine cingulin, and developed stable MDCK cell lines where either full-length cingulin, or head or rod+tail domains were inducibly overexpressed. Surprisingly, analysis of these clones by immunoblotting, microarray, immunofluorescence, measurement of transepithelial resistance, and cell density showed that the overexpression of either full-length cingulin or its domains does not significantly affect TJ protein levels, gene expression, RhoA activity, cell density, doubling time, and the organization and function of TJ. These results suggest that compensatory mechanisms prevent dominant-negative effects in this model system, and that modulation of cellular functions by cingulin occurs within physiological protein levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.