Abstract

The mechanism of action of diethylcarbamazine (DEC), an antifilarial drug effective against tropical pulmonary eosinophilia, remains controversial. DEC effects on microfilariae depend on inducible NO synthase (iNOS). In eosinophilic pulmonary inflammation, its therapeutic mechanism has not been established. We previously described the rapid up-regulation of bone marrow eosinophilopoiesis in ovalbumin (OVA)-sensitized mice by airway allergen challenge, and further evidenced the down-regulation of eosinophilopoiesis by iNOS- and CD95L-dependent mechanisms. We investigated whether: (1) DEC can prevent the effects of airway challenge of sensitized mice on lungs and bone marrow, and (2) its effectiveness depends on iNOS/CD95L. OVA-sensitized BALB/c mice were intranasally challenged for 3 consecutive days, with DEC administered over a 12-, 3-, or 2-day period, ending at the day of the last challenge. We evaluated: (1) airway resistance, cytokine (IFN-gamma, IL-4, IL-5, and eotaxin) production, and pulmonary eosinophil accumulation; and (2) bone marrow eosinophil numbers in vivo and eosinophil differentiation ex vivo. DEC effectively prevented the effects of subsequent challenges on: (1) airway resistance, Th1/Th2 cytokine production, and pulmonary eosinophil accumulation; and (2) eosinophilopoiesis in vivo and ex vivo. Recovery from unprotected challenges included full responses to DEC during renewed challenges. DEC directly suppressed IL-5-dependent eosinophilopoiesis in naive bone marrow. DEC was ineffective in CD95L-deficient gld mice and in mice lacking iNOS activity because of gene targeting or pharmacological blockade. DEC has a strong impact on pulmonary eosinophilic inflammation in allergic mice, as well as on the underlying hemopoietic response, suppressing the eosinophil lineage by an iNOS/CD95L-dependent mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.