Abstract

Chronic, excessive alcohol consumption is associated with myocardial dysfunction in humans. The molecular mechanisms and cellular signaling pathways contributing to this cardiac dysfunction remain largely unknown. This study examined the effects of chronic alcohol consumption on myocardial function and cardiac myocyte signaling pathways. Adult male rats were fed a commercially prepared diet containing either ethanol (13 g/kg/d) or isocaloric control diet for 1 month. In vivo hemodynamics were measured in awake rats after inserting a catheter tip in the left ventricle under general anesthesia. Ventricular dysfunction was evidenced in awake, alcohol-fed rats by increased left ventricular end diastolic pressure, decreased systolic developed left ventricular pressure, and decreases in both positive and negative dp/dt compared with controls. Cardiac myocytes isolated from alcohol-fed rats also demonstrated an attenuated response to the beta-adrenergic agonist, isoproterenol, compared to controls. This response was significantly reversed by the nitric oxide synthase (NOS) inhibitor, N-monomethyl-L-arginine (L-NMMA). Western analyses confirmed inducible nitric oxide synthase (iNOS) protein synthesis in cardiac myocytes isolated from alcohol fed rats. It is therefore concluded that chronic alcohol ingestion results in iNOS-mediated attenuation of adrenergic signaling and depression in both systolic and diastolic function in rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.