Abstract

We have previously reported that adenoviral vector-mediated interferon (IFN)-beta gene therapy inhibits orthotopic growth of human prostate cancer cells in nude mice. The purpose of this study was to determine efficacy and mechanisms of this therapy in immune-competent mice. TRAMP-C2Re3 mouse prostate cancer cells infected with 100 multiplicity of infection (MOI) of adenoviral vector encoding for mouse IFN-beta (AdmIFN-beta), but not AdE/1 (a control adenoviral vector), produced approximately 60 ng/10(5) cells/24 h of IFN-beta. The tumorigenicity of AdmIFN-beta-transduced cells was dramatically reduced in the prostates of C57BL/6 mice. A single intratumoral injection of 2 x 10(9) PFU (plaque-forming unit) of AdmIFN-beta inhibited tumor growth by 70% and prolonged survival of tumor-bearing mice. Intriguingly, this AdmIFN-beta therapy did not alter the growth of tumors in inducible nitric oxide synthase (iNOS)-null C57BL/6 mice. Immunohistochemical analysis revealed that treatment of tumors with AdmIFN-beta in wild-type C57BL/6 mice led to increased iNOS expression, decreased microvessel density, decreased cell proliferation, and increased apoptosis. Furthermore, quantitative reverse-transcriptional PCR analysis showed that AdmIFN-beta therapy, in C57BL/6 but not the iNOS-null counterparts, reduced levels of the mRNAs for angiopoietin, basic fibroblast growth factor, matrix metalloproteinase-9, transforming growth factor-beta1, vascular endothelial growth factor (VEGF)-A, and VEGF-B, as well as the antiapoptotic molecule endothelin-1. These data indicated that IFN-beta gene therapy could be effective alternative for the treatment of locally advanced prostate cancer and suggest an obligatory role of NO in IFN-beta antitumoral effects in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.