Abstract

The cyclin-dependent kinase (CDK) inhibitor p27 Kip1 (p27) is an important regulator of cell cycle progression controlling the transition from G to S-phase. Low p27 levels or accelerated p27 degradation correlate with excessive cell proliferation and poor prognosis in several forms of cancer. Phosphorylation of p27 at Thr187 by cyclin E–CDK2 is required to initiate the ubiquitination-proteasomal degradation of p27. Protecting p27 from ubiquitin-mediated proteasomal degradation may increase its potential in cancer gene therapy. Here we constructed a non-phosphorylatable, proteolysis-resistant p27 mutant containing a Thr187-to-Ala substitution (T187A) which is not degraded by ubiquitin-mediated proteasome pathway, and compared its effects on cell growth, cell-cycle control, and apoptosis with those of wild-type p27. In muristerone A-inducible cell lines overexpressing wild-type or mutant p27, the p27 mutant was more resistant to proteolysis in vivo and more potent in inducing cell-cycle arrest and other growth-inhibitory effects such as apoptosis. Transduction of p27(T187A) in breast cancer cells with a doxycycline-regulated adenovirus led to greater inhibition of proliferation, more extensive apoptosis, with a markedly reduced protein levels of cyclin E and increased accumulation of cyclin D1, compared with wild-type p27. These findings support the potential effectiveness of a degradation-resistant form of p27 in breast cancer gene therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call