Abstract

Cadmium (Cd) is a heavy metal that is one of the most toxic environmental pollutants throughout the world. We previously reported that Cd exposure impairs olfactory memory in mice. However, the underlying mechanisms for its neurotoxicity for olfactory function are not well understood. Since adult Subventricular zone (SVZ) and Olfactory Bulb (OB) neurogenesis contributes to olfaction, olfactory memory defects caused by Cd may be due to inhibition of neurogenesis. In this study, using bromodeoxyuridine (BrdU) labeling and immunohistochemistry, we found that 0.6 mg/L Cd exposure through drinking water impaired adult SVZ/OB neurogenesis in C57BL/6 mice. To determine if the inhibition of olfactory memory by Cd can be reversed by stimulating adult neurogenesis, we utilized the transgenic caMEK5 mouse strain to conditional stimulate of adult neurogenesis by activating the endogenous ERK5 MAP kinase signaling pathway. This was accomplished by conditionally induced expression of active MEK5 (caMEK5) in adult neural stem/progenitor cells. The caMEK5 mice were exposed to 0.6 mg/L Cd for 38 weeks, and tamoxifen was administered to induce caMEK5 expression and stimulate adult SVZ/OB neurogenesis during Cd exposure. Short-term olfactory memory test and sand-digging based, odor-cued olfactory learning and memory test were conducted after Cd and tamoxifen treatments to examine their effects on olfaction. Here we report that Cd exposure impaired short-term olfactory memory and odor-cued associative learning and memory in mice. Furthermore, the Cd-impaired olfactory memory deficits were rescued by the tamoxifen-induction of caMEK5 expression. This suggests that Cd exposure impairs olfactory function by affecting adult SVZ/OB neurogenesis in mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.