Abstract

An induced polarization survey was conducted at Roosevelt Hot Springs, using the dipole-dipole array. The survey consisted of two profile lines, one across the southern end of the system (2200N) and another across the northern portion (5950N). A total of 15 line-km of profiles was run, with 100 m and 300 m dipoles out to n spacings of 4 to 6. Apparent resistivity amplitude and phase data were gathered with a phase-sensitive receiver at frequencies between 32 Hz and 1/256 Hz. The data are presented in the form of apparent resistivity of phase pseudosections. Induced polarization effects in geothermal environments can result from clays and pyrite which are associated with hydrothermal alteration. Laboratory measurements on altered material show some induced polarization effects at frequencies below 1 Hz which are thought to be due to pyrite. A higher frequency polarization (> 1 Hz) is attributed to the effects of clays. The primary purpose of this survey was to investigate the feasibility of mapping clay alteration zones, and separating them from other conductive features, by making use of their polarization characteristics. The field data show some small, low frequency phase anomalies which may be the result of pyrite deposition. The higher frequencies show considerable phase effects, which can be the result of clays, but the effects of electromagnetic coupling have not, as yet, been assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.