Abstract

Half-of-the-sites reactivity of the catalytic site thiol groups of UDPglucose dehydrogenase (UDPglucose:NAD + 6-oxidoreductase, EC 1.1.1.22) can be ascribed either to the induction of conformational asymmetry following derivatization of one half of the subunits or to intrinsic conformational differences in the subunits of the native enzyme. If the half-sites reactivity behavior is due to induction effects, the magnitude of the induction could be expected to depend on the nature of the covalent modification. On the other hand, if the half-sites reactivity behavior is due to pre-existing asymmetry and there is no communication between catalytic centers, the properties of unmodified subunits should be independent of the nature of the covalent derivative introduced on the modified subunits. According to the induced asymmetry hypothesis, the catalytic activity of half-sites modified enzyme might be different for different covalent modifications, whereas for the rigid pre-existing asymmetry hypothesis the catalytic activity of half-sites modified enzyme should be the same regardless of the modifying group. During the course of catalytic site thiol group modification by a number of thiol specific reagents, the loss of enzyme activity was equivalent to the degree of modification for most of the reagents employed. However, with iodoacetate and 5-(iodoacetamidoethyl)amimonaphthalene-1-sulfonic acid, half-sites modification of UDPglucose dehydrogenase

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call