Abstract

A topological defect in the form of the Abrikosov–Nielsen–Olesen vortex is considered as a gauge-flux-carrying tube that is impenetrable for quantum matter. Charged scalar matter field is quantized in the vortex background with the perfectly reflecting (Dirichlet) boundary condition imposed at the side surface of the vortex. We show that a current circulating around the vortex and a magnetic field directed along the vortex are induced in the vacuum, if the Compton wavelength of the matter field exceeds considerably the transverse size of the vortex. The vacuum current and magnetic field are periodic in the value of the gauge flux of the vortex, providing a quantum-field-theoretical manifestation of the Aharonov–Bohm effect. The total flux of the induced vacuum magnetic field attains notable finite values even for the Compton wavelength of the matter field exceeding the transverse size of the vortex by just three orders of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.