Abstract

Cucumber mosaic virus (CMV) is a serious threat to vegetable production worldwide. The efficacy of Phoma sp. GS8-2 was evaluated against CMV in Arabidopsis and cucumber plants. Arabidopsis and cucumber plants treated with barley grain inoculum (BGI) or cell-free filtrate (CF) of GS8-2 demonstrated decreased CMV severity and titre using enzyme-linked immunosorbent assay relative to the control. Cucumber growth and yield parameters were significantly increased due to colonization with GS8-2 under field conditions. Molecular mechanisms underlying mediated resistance induced by GS8-2 against CMV were investigated. Real-time polymerase chain reaction (RT-PCR) results confirmed that both BGI and CF of GS8-2 stimulated the transcription levels of pathogenesis related genes (β1-3 glucanase, chitinase, PR1, PAL1 and LOX1), which could be involved in induced resistance against CMV. Exploring the expression of the highly upregulated genes in GS8-2-induced plants suggested the contribution of multiple plant defence pathways against CMV. © 2018 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.