Abstract

A _theta_ is a graph consisting of two non-adjacent vertices and three internally disjoint paths between them, each of length at least two. For a family $\mathcal{H}$ of graphs, we say a graph $G$ is $\mathcal{H}$-_free_ if no induced subgraph of $G$ is isomorphic to a member of $\mathcal{H}$. We prove a conjecture of Sintiari and Trotignon, that there exists an absolute constant $c$ for which every (theta, triangle)-free graph $G$ has treewidth at most $c\log (|V(G)|)$. A construction by Sintiari and Trotignon shows that this bound is asymptotically best possible, and (theta, triangle)-free graphs comprise the first known hereditary class of graphs with arbitrarily large yet logarithmic treewidth. Our main result is in fact a generalization of the above conjecture, that treewidth is at most logarithmic in $|V(G)|$ for every graph $G$ excluding the so-called _three-path-configurations_ as well as a fixed complete graph. It follows that several NP-hard problems such as Stable Set, Vertex Cover, Dominating Set and $k$-Coloring (for fixed $k$) admit polynomial time algorithms in graphs excluding the three-path-configurations and a fixed complete graph.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call