Abstract

We show that for any Latin square $L$ of order $2m$, we can partition the rows and columns of $L$ into pairs so that at most $(m+3)/2$ of the $2\times 2$ subarrays induced contain a repeated symbol. We conjecture that any Latin square of order $2m$ (where $m\geq 2$, with exactly five transposition class exceptions of order $6$) has such a partition so that every $2\times 2$ subarray induced contains no repeated symbol. We verify this conjecture by computer when $m\leq 4$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.