Abstract

Three classes of quantum states are induced from coherent state (CS) based on three operations associated with the photon creation operator. One class is the famous photon-added coherent state (PACS) introduced by Agarwal and Tara (Phys. Rev. A 43, 492–497, 1991). The other two classes are the orthogonal states of the CS (Here we abbreviate them as OCS1 and OCS2). Indeed, the OCS1 is just the displacement Fock state, and the OCS2 is constructed by orthogonalizer proposed by Kim group (Phys. Rev. Lett. 116, 110501, 2016). In contrast to the original CS, the three induced states can exhibit their respective nonclassical properties. We study and compare some properties for these four quantum states (CS, PACS, OCS1, OCS2). The studied properties include the mean number of photons, the sub-Poissonian character, the squeezing effect in the field quadrature, and the quasi-probability distributions including the Husimi Q function and the Wigner function. Besides, their fidelities between each two of them are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.